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Abstract

~T-e object of our research is the codification of programming knowledge for the synthesis of
concurrent programs. This final report presents the derivation of two concurrent algorithms: dynamic
programming (for the class of problems that run in polynomial time on sequential machines) and
array multiplication. Both derived concurrent versions run in linear time. The concurrent versions
are significant and complex algorithms, though they are not new and already have been reported in
the literature. The synthesis knowledge for these derivations is embodied in seven synthesis rules,
preliminary versions of which are presented in this report. The rules will probably generalize to
other classes of algorithms but we have not explored that issue yet.

We have also discovered a pair of techniques called virtualization and aggregation. This pair of
tecbniques (plus the other seven rules) is shown to be powerful enough to synthesize Kung’s systolic
array architecture [Kung-76) from a specification of matrix mult.iplicat.i}.K
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Introduction

In this paper we describz methods for synthesizing parallel structures from concise, very high level
specifications of algorithms. We use the very high level language, V, which can express both programs
and program transformation rules. In order to allow for reasoning sbout concurrency, we have
defined !anguage constructs to express parallel structures that solve a class of problems. In these
probiems the number of processors is a nonconstant polynomial in some measure of the problem
size. We then developed rules, or abstract input/cutput specifications, that transform specifications

of sequential algorithms written in V into parallel structures that accomplish the same tasks. We
bave coded some of them. in V.

First, rules operate on specifications by identifying processing that can be perform:d concurrently on
distinct elements of arrays that describe either the problem, its solution, or some intermediate results.
They then add specifications of multiple processors, each with respousibility for a portion of the input
data, anc a specification of the interactions among the processors. Next, other rules r. iv:e the degree
of interconnection between the processors whenever that degree is not asymptotically constant but is
polynomial in the size of the problem. We apply these rules to a subclass of dynamic programming
specifications and to a specification of matrix multiplication, and have derived asymptotically fast,
sparsely interconnected networks.

We have also developed techniques to create Kung’s systolic array parallel structure from a
specification of matrix multiplication. We have identified and formalized a powerful pair of tech-
niques, which we call virtualizalion and aggregation, for produciag certain paralle! structures that
are often complex (and generally recognized as “clever”), given only high level specificaticas.

Intuitively, virtualization is the addition of one or more dimensions to an array, turning each single
element into a column (or plane or hyperplane) that contains the partial resuits of the computation
of that element. For example, if A, ; is computed using a single enumeration, then virtualization
would produce a three dimensional array, say A', and A’,-’j'k would contain the k*2 partial result

of this enumeration. Virtualizations we have studied reduce the computation per array element to
o(1).

Also intuitively, aggregation is the grouping together of processors, each of which does a small
amount of work, into groups of processors, each represented by a single processor. Each processor
does all of the work that any processor in its original group did, but this caa still be done quickly
because each of the processors in the original group had a small amount of work to do, and no two
processors had to do their work at overlapping times. There exist sn enormous number of ways to
group processors, but we will use only simple ones.




Mathematical Notation

IJ
BorB;
nmy

B

(.. u))
n

##{set)
8(g(n))

number of processors used

(where B is any letter) a vector of b;,{ < 1 < u for some lower limit { and upper
limit u. Where ! and u are particularly important and non-obvious, (b;,...,5,}
(or (b;) where {==y) may be used.

the concatenation of the vectors, I and 7
the length of the vector !
the ordered sequence {not set) of integers from { to u, inclusive

n will always be used to denote some measure of the size of a problem to be
solved by an algorithm or a parallel structure.

cardinality of the set

Order g(n) where precisely known. This means that g(n) is (within a constant

factor) the best estimate of whatever is being measured as n increases. Formally,
J{n)=0(g(n)) is defined as

Jconstants ¢, ', ¢"wheren > e = ¢lg(n) < f(z) < g(n)

J{n) is called the asymptetic behavior of g or g(n}




Section 1

Problem Description, Solution Techniques and Rules

by
Richard M. King
Kestrel Institute
October 1982

We have been studying the derivation of parallel computation structures which achieve an asymptotic
improvement in the computation time, as compared with the best known sequential algorithm. To
achieve this the number of processors in use must grow with the size of the problem. We will be

interested in cases where P > 6(n), because these offer the greatest opportunities for sharing the
work among a large number of processors.

Algorithms whose asymptotic running time is (n') for § > 1 ofen use an interna] aggregated data
structure whose size is §(n’) for some 1 € j < i. We try to create parallelism by assigning a
processor to each element of the aggregated data structure. The structures most important in this
work are sets, arrays of various dimensionality, and stacks. This paper considers arrays. Data
structure selection for an algorithm dependent on stacks or sets can produce arrays, so this choice
is not overly restrictive or unnatural. Another important issue in parallel algorithm synthesis is
the conrcectivity of the resulting multiprocessor net. This is especially important because we seek
asymptotic growth in the number of processors, 3o too rich a connectivity may result in a collection

of processors and interconnections that would be impossible to fabricate economically. We thus give
attention to reducing connectivity.

In this paper the term parallel structure, or simply structure, will be used to denote a program

designed for a 8(n) or larger collection of processors plus a specification of how they should be
interconnected.

§1.1 Taxonomy of the Synthesis Task

Figure 1 is a taxonomy of the various states that a synthesis process can be in, together with the
pussible synthesis steps. We will use such phrases as “a Class D synthesis® throughout this document.
In the taxonomy, structures to the right are more desirable than the ones oa the left, because they
require fewer connections between processors. Each labelled arc represents a possible synthesis step.

It might seem that every Class D synthesis (for example) is harder than any Class A or Class B
synthesis, since the result of a Class D synthesis is the same as the result of a Class A followed by
a Class B synthesis. This is not true in general, although it usually holds. Some specifications are
especially suitable for some of the “higher” syntheses. One example is that a specification including
backtracking is often more easily synthesized into a tree-structured parallel structure than any other.




1.2. A Case STupY: POLYNOMIAL-TIME DYNAMIC PROGRAMMING g

abstract A A randomly /B_\\ lattice, _/-C—\tree
specification lntercommﬁn{catmg intercommunicating structure
aralle

! aratllel
structure \ structire
D \—/

Figure 1. Taxonomy of Syntheses

We concentrate on Class D synthesis in this report because it represents an advance on our prior
work on Class A synthesis ((GCP-81]).

§1 2 A Case Study: Polynomial-Time Dynamic Programming

“Ve have examined a class of Polynomial time {P-time) dynamic programming algorithms for which
1t is possible to synthesize an optimal parallel scheme. The synthesis uses rules displayed in § 1.3, and
infarence capabilities which Kestrel proposes to develop in 1983, described in {Brown-82!. Abstractly
programmed algorithms in this class include the Cocke-Younger-Kasami parsing algorithm for a
fixed, possibly ambiguous Chomsky Normal Form grammer, described in {AhcUIl-72]; the Optimal
Binary Search Trce algorithm, described in {Kuuth-73]; and Optimal Multiple Matrix Multiplication,
described in {AHU-74]. All of the algorithms fit into the following scheme.

Each algorithm generates the “solution” to a problem whose input is a sequeunce $ of n items by
using a dynamic programming technique. This technique generates a solution for a sequence of items

by combining solutions for contiguous subsequences. The solution V(&) for a sequence K of length
m is found by:

1. Generating the m—1 possible partitions of K into contiguous subsequences I and J such that

11l=K;
2. Forming for each partition a partial solution for 1/} by applying s function F to V(1) and V(2);

3. Obtaining V(7]|7) by combining (using a binary operation ) all of the partial solutions. This
is expressed formally below:

ViRy= © FvO.v(d)

1,7:N =R

In order to obtain the following parallel structure that runs in time é(n), two conditions must told:
» Both ((z,y) and F(z,y) must take constant time,

» © must be both commutative and associative. This allows F(V(1), V(2)) values to be included in
the running ()-total in any order they become available.

These conditions are met by a sizable class of algorithms, e.g. the algorithms mentioned above. The
2lgorithm generates the solution V(3) for the original problem 3 of length n. The process starts
with V({s;)) for each &, €3, then generates solutions for subsequences of length 2, 3, and so on, up
to n. We give below two dynamic programming algorithms that fit into this scheme.

The Cocke-Younger-Kasami algorithm parses a sequence of terminal symbols according to a fixed
grammar, G, in Chomsky Normal Form. This form specifies that each production rule in the
grammar is either of the form N — tfor nonterminal N and terminal ¢, or N — PQ for nonterminals
N, P, and Q. In this parsing algorithm, each problem ic a sequence of terminal symbols, 7, and
the solution V(7T is the set of nonterminal symbols that derive . Let the initial terminal sequence
be (t;...ta). Then V((t,)) are those nonterminals NV for which there is a production rule in the
grammar of the form N — t;. Given two sequences of terminals A and B, the nonterminals that
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produce Ai|B include those nonterminals N for which there is a rule N — PQ where P€ V(A) and
< EV(B). The nonterminals that produce a sequence 3 are obtained by dividing the sequence 3
into two subsequences in all possible ways and taking the union of the results. In our formalism,

F(V(3),V(I)={NI[N - PQIEGAPeV(B)AQeV(T)
and
@ is the Union operation, which is indeed associative and commutative.

Another example of a dynamic programming algorithm fitting our scheme is finding the complexity
of the optimal grouping to multiply a given sequence (M;, Mz ... M,} of matrices. Since matrix
multiplication is associative, multiplying the matrices in different groupings produces the same result
matrix, but different groupings may have different execution eficiencies. If M is a p X ¢ matrix,
and N is a ¢ X r matrix, then the product M X N will be a p X r matrix, and the muitiplication
will execute in time proportional to pqr (if a simple matrix multiplication algorithm is used).

This problem fits into the scheme presented above in the following fashion. The “solution” for each
matrix subsequence V({M,... M,)) is a triple (p,q,c): p is the row size of My; ¢ the column size of
M; (since muitiplication using any grouping of (M,... M;) results in a p X q matrix) and ¢ is the
optimal execution cost for computing M; X --- X M;. The F for this algorithm is defined below:

F((p1,q1,¢1),(p2,q2,€2)) = {p1,q2,¢1 + €2 + 219142}

& for this algorithm returns the triple with the minimum cost element. (Since only the costs can
differ among triples, (O’s choice is arbitrary if the costs happen to be the same.) The minimum
operation is associative and commutative.

A high-level specification of the dynamic programming algorithm is presented below. A subsequence
can be represented by its length and where it begins. The array A used below contains solutions to
subsequences: the element A; ., contains V{{si, ..., 914+ m—1)), Where 1 is the initial sequence. The
complexity of each “executable” statement is presented at the right.

The algorithm specification is as follows:

ARRAY A1 <m<n1<I<n—m+1
INPUT ARRAY v,1 <1< n

ENUMERATE (€{(1...n}} do #(1)

A~ u f(n)

ENUMERATE me€{(2...n)) do (1)

ENUMERATE I€{1...n—m + 1} do 8(n)

Ame= O FlAp Aiprm—) 9(n?)
ke{l..m—1}

Figure 2. Specification of 8(n®) Dynamic Programming

A cost of 9(n?) is assigned to the evaluations of F and ¢ because it is given that a single evaluation
of both F and © takes constant time.

The time complexity of the specified algorithm executed on a sequential machine is indeed o(n%)’
However, it is possible to implement the specification on a two-dimensional array of §(n?) processors
and the resulting algorithm will run in §(n) time. The memory size of cach processor is (n). Below

‘A trick is available for Optimal Binary Search Tres. This trick involves bounding &k in Figure 2 more narrowly
thag {1...m—1}. This trick reduces the aigorithm's running time to 9(n?), but It does not generalise tu the othor
algorithms. We kpnow of no analog to this trick for parailel structures.

Sl
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we describe the operation of the structure, and then prove that it is a §(n) algorithm. This algorithm
has been reported in the literature [GKT-79).

The network of processors is displayed in Figure 3. Observe that P; ., is connected to Py ,n_, and
Pi—1.m—1. Each processor P; m will compute the value of A;m. To do this it needs two streams of
infortmation: Ay x and Ajx m—t, Where k < m. These streams of data come respectively over wires
from processors Py ,m—1 3nd Piyy m—1. Each processor P, (except Py .) will send every A-value
raceived from Pi;m—) t0 Py myy and from Py m1 40 Pioy,m4 a3 s00D as P, gets it. Each
processor will also compute F-values and merge them into a running (-total as soon as it gets the
A-values necessary.

Pia P21

| P
2 2

Pay:
P;
Pas

AWZRN

4

Figure 3. Processor Interconnections

At first glance, it might appear that this slgorithm has time complexity 6(n2?). Each processor needs
to receive §(n) A-values from each of its incoming wires; it must at some time perform §(n) worth of
computation on the data received before it sends its result on each of its outgoing wires. However,
a careful timing argument shows that an execution time of 4(n) can be achieved.

Deflnition 1.1. Within P ., for any k where 1 £ k < m, Ay and Ay m—a are called a
complementary pair of A-values.

Procussor P; m will apply F to each complementary pair of A-values.

The aexi lemma shows that each processor P, ,, receives all 2m—2 values it needs, though it waits
6(m) for its first compiementary pair, Aj[m/21 a0d Ai+{m/2),;m—{m/a}-

Lemma 1.2. Each processor Py, where ] < m > 1 receives the values A; v where 1 < m<m
and (separately) Ajt m—m/.m' wWhere m' < m in order of increasing m'.

Proof: By induction on m. Clearly this is true for P; 3, which receives only one value on each
of its incoming wires. Now supgpose it is true for P;,m—1 a0d P14y m—~;. Then P, will receive
A-vaives in the proper order from Pim—y and Pi41,m—1 through m'=m—2, following which it
receives A m—3 and Ai41,m—1 from those processors. But the latter two A-elements are just those
required to preserve the sequences. |

system startup T==0, and after z units of time T-=z. The time unit satisfies the first condition of
the fcllowing lemma.

Lemma 1.3. If all of the following condilions are met:

» All of the followsng takes processor Py, no more than one unit of time: recesving two values, one
each from Py m—1 and Piy | m—1, sending these values on to Py mys and Py my1, applying the
function F twice to two complementary pairs of A-values if all values are available;, and merging
the resulting value into a running (O-total.

» The A-values come into Py . in the order indicated by Lemma 1.2.
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v Eachprocessor Py m sends velues recesved from Py g reap Pioy 1 L0P may resp. Piy ma
nn later than one time ynil after recespt.

» At T=0 processor P,y tranamsls A; 1.

then P, ,,, wil cempule A, ,, no later than T=2m.

Proof: By induction: P,y is initialized to know A;;. Now su.gose the lemma it true for m' < m
and suppose T=2m" for some m"” < m. First prove a sublemma, that at this time P; m will have

included at least max(0,2(m"”—!m/21)) F-values in its running O-total. This sublemma is proves
by industion on m"—{m/2].

When reading the proof of the sublemma, keep in mind taat the *life® of a processor P; , is divided
into three epochs:

1. Wher T < m, the processor may have received no A-values.

2. When m < T < 1lim, the processcr will have received at least T—m A-values from each of
its inpu* lines. Since the first half of the A4-values from each inbound wire form complementary
pairs with the last half of the vaiues from the other inbound wire, P; » may not have been able
to perform any calculations of any F-values yet.

3. When T §m, the processor will have received at ieast half (rore accurately, at least T—m) of
she values from each inbound wire. During each unit interval, it will receive one A-value from
cach inbound wire, which will “match” with some value that was stored from the other wire

during epoch 2. Two F-caleu'ations will be possible — one for each of the just-received inbound
data.

If m"--"m/27=0 the sublemma requires nothing. If m”"—[m/2] > 0, consider the situation
m" —Tm/2] before T==2m". All processors P;; and P4, ;, where § < {m/2] -+ m"—m/2] will
have completed vheir work and their answers will have had time to reach P;,,. Thus at least
2(m"—{m/2]) pairs of A-values will have arrived. Since (by induction on m"—[m/2}) two time
units ago 2(m"”—{m/2])—2 F-values had already been merged into the running ()-total there is

plenty of time to merge two new F-values into the running (-total, completing the induction step
of the sublemma.

Lemma {.3 follows immediately from the sublemma and the observation that the merging of m—1
F-values iato the running (O-total in Py, » constitutes a calculation of A;m. §

Theorem 1.4. The lime to compute Ay » 12 6(n).

Pronf: Immediate from Lerama 1.3.

In tie next section we will show how this parallel structure can be derived from the specification in
Figure 2.

§1.3 Rules for Parallel Structure Synthesis

Rules for the Class A synthesis task appear elsewhere (see [GCP-81]). This report describes the task
of synthesis of parallel structures for arrays of processors in which the interconnections describe a
k-dimensional lattice for some k, i.e. a Class D synthesis task.

As examples of rule application and a demonstration of the rules’ effectiveness, we apply each rule to
the P-time dynamic programming specifications. We will repeat that specification here, augmented
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with output array descriptions.
(P.1) ARRAY Aym,1 <m <, 1l << n—-m <1
INPUT ARRAY ¢v,1 €1 < n
OUTPUT ARRAY O

ENUMERATE l€({1...n)) do 6(1)

A~y 8(n)

ENUMERATE m€{{2...n)) do 8(1)

ENUMERATE [€{1...n—m -+ 1} do 8(n)

Alm ~ Q F(Aux, Aigr,m—») 8(n%)
x€{l..m—1)

O —Ajn oQ1)

Figure {. Specification of §(n®) Dynamic Programming with Explicit 1/O

1.3.1 Preparatory Rules

The problems now amenable to Class D synthesis have internal arrays of storage, and the requirement
is to fll in the array by computing a value for each element. Our strategy will be to assign a processor
t . each element of the array. This rule declares a processor for each element of the main array in the
problem, and composes a single enumerated PROCESSORS statement. This statement has several
clauses: the processors definition clause, the HAS clause, the HEARS clause(s), and the USES
clause(s). Any part of the PROCESSORS statement except the processors definition clause can be
made conditional. An example of a PROCESSORS statement is shown below:
PROCESSORS P;p, ! S m<n, 1 Li<n—m+1
HAS A;
if m=1 then USES v;, HEARS Q
2 <m < nthen
USES Ajx, 1 <k <m
USES A(.q.g,m_k,l S k S m
HEARS Py pm—y
AEARS Pyt m—1

This statemest means all of the following:

» A family of processors exists. The family name is P. Each member of the family is named by
two indices, and any member P;,, existsif 1 <m < n Al << n—m-+1 The value nis
an externally defined constant value (fcr any instance of the problem) defining the problem sise.
This PROCESSORS statement actually declares some facts about every processor in the family.

» Each element, P; m, of this family is responsible for computing the value of (i.e. HAS) A;m. A is
an array declared elsewhere in the specification that contains the PROCESSORS statement.

» If P, is defined it needs v; to compute its HAS values, and it expects to get these values from
(i.e. HEARS) the (only) processor in the Q family.

» If Py is defined and 2 < m £ n, then Py, needs the values of A; s for any k, 1 < k¥ < m—1.
It also needs Aj4+x m—x for any k in that range. It expects to get these values from processors
in the P family, namely P;m—1 80d Pi4{,m—;. The scope of the bound variables list (in this
case, "I, m") is the entire PROCESSORS statement. Two PROCESSORS statements must have
distinet processor names (in this case, “P*).
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1.3.1.1 Rule Al: Give Each Non-1/O Array Element its Own Processor

By our conventions, the portion before the * — * is the antecedent and the rest is the conse-
Juent. Variables free in the antecedent are implicitly existentially quantified and the scope of this
quantification is the entire rule. Variables free only in the consequent are universaliy quantified (but
this is rare). A rule is said to apply if the antecedent is true; when this happens the semantics of
the rule is to make the consequent true. It is explicitly permissible for the consequent to make the
antecedest no longer true.

rule MAKE-PSs(**) TRANSFORM
X STATEMENT
AX € “* STATEMENTS
A X 'ARRAY NAMEgoynp ENUMERS’
AY=(GENSYM 'PROC)
A Z'PROCESSORS Ypoynp ENUMERS HAS NAMEgounp'

—

Z € ** STATEMENTS
of this quantification is the entire rule. Variables free only in the
MAKE-PSs applied to (P.1) binds as follows:

bindings:

**==((entire speci fication))
X='ARRAY A n,1 <m<n1<i<n—m+1

NAME='A"
BOUND=‘l,m’
ENUMERS=1<m<n1<i{<n~m+1'
Y="P’
Z='"PROCESSORS P;,,,1 < m<n,1 << n—m+1
HAS Ay '
obtaining
(P.2) ARRAY Ay, 1 € m<n,1 <1< n—m+1

! PROCESSORS Pym,l Sm <1 << n—m+1BRAS A1
INPUT ARRAY 4,1 £ 1< n
OUTPUT ARRAY O

ENUMERATE (€((1...n)) do 8(1)

A‘.; ~ U ‘(ﬂ)

ENUMERATE m€/{(2...n)) do 8(1)

ENUMERATE l€{1...n—m + 1} do é(n)

Ame— O Fllis, Atprmei) 6(n?)
rE(l...m—1}

O+—Aya (1)

as the new state of the database.
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‘ 1.3.1.2 Rule A2: Assign I/O Arrays to Processors

! This rule assigns a single processor to each input or output array. The reason only a single processor
is assigned is that it is assumed that input values will reside in a single entity, such as a tape drive.

rule MAKE-IOPSs(**) TRANSFORM
X .STATEMENT
1 A X € ** STATEMENTS
1 A X:I0O ARRAY NAMEgoynp ENUMERS’
A (I0="INPUT Vv IO="OUTPUT )
A Y=(GENSYM 'PROC)
A Z:'PROCESSORS Y HAS NAMEgoynp ENUMERS'
-

Z €** STATEMENTS

Rules MAKE-PSs and MAKE-IOPSs make PROCESSORS statements that do not have USES
and HEARS clauses yet. The next rule fills in those clauses, and subscquent rules improve them,

Rule MAKE-IOPSs applies for two sets of bindings:

**=((entire speci fication))
X='OUTPUT ARRAY O’

*#=((entire specification))

IO="0UTPUT JO="INPUT
NAME=0 NAME=v
BOUN D=(empty string) BOUND="
ENUMERS=(empty string) ENUMERS=1<I<n
Y=R Y=Q

Z='PROCESSORS R

Z='PROCESSORS R

X='INPUT ARRAY v;,1 < I < n’

HAS O’ HAS y,1 <1< n'
resuiting in
(P.3) ARRAY Ay, 1 <m<n,1 <1< n—m+1
PROCESSORS Pim,1 < m < 1,1 <1< n—m+1HAS A m
INPUT ARRAY v;,1 <[ < n
| PROCESSORS QHAS v,1 <! < n
OUTPUT ARRAY O
| PROCESSORS RHAS O
ENUMERATE [€{(1...n)) do é(1)
(P.3a) A~ é(n)
ENUMERATE m€{{2...n)} do 8(1)
ENUMERATE [€{1...n—m + 1} do 8(n)
(P.3%) Am — 0 F(Aix, Aigr,m—1) 0(n3)
kE(l..m—1}
(P.3¢) O« Aa o(1)

So far, all rule application can be done in a straightforward manner, without inference.
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1.3.1.3 Rule A3: Determine Processors’ Inputs

We need rules to describe the connections between processors and the dats that processors nced to
produce results. This rule is very conservative - it determines what array valnes each processor P’
needs, and it specifies a direct connection from the processors holding those vulues to P°. The USES
clause describes the valuss that a processor needs; the HEARS clause describes the processors that
have (HAS) these values.

To determine this, consider the innermost loop which assigns values to array elements indexed by
non-region-constants. Note that the form of the rule shown below evidences a nced for elaborate
flow analysis. Non-constant array index expressions are used as processor indices. The indices
for those array elements whose values can affect the assigned value comprise the index expressions
for the USES and HEARS sets. A reference at the same loop level will normally generate USES
and HEARS clauses with null enumerations. A reference contaiped in a deeper loop will normally
generate instances of such clauses with inberited enumerators from the loops.

rule MAKE-USES-HEARS (**) TRANSFORM
*$:'PROCESSORS PDCLpgy PENUMER BAS ANAMEsiNpEx’
A CB=**.CONTAINING-BLOCK
A X =(INNER-LOOP-THAT-DEFINES ANAME CB)
AY € (ARRAY-REFERENCES-AFFECTING X)
A 2=(EFFECTIVE-ENUMERATOR-OF Y X)
A W.CONDITIONS =C B.CONDITIONS U(INFERRED-CONDITIONS X)
A W.CLASS =USES-CLAUSE
A WARG =‘ANAME
(REL-BV PBV X.DEF-OF INDEX-EXPR Y 2)

(RELENUMER PBV X .DEF-OF .NDEX-EXPR Y 2)’
A Q.CONDITIONS =CB.CONDITIONS (INFERRED-CONDITIONS X)
A Q.CLASS =HEARS-CLAUSE .
A H1SBV=ANAME.PROCSTMT .PROC-BV-OF
A QARG ='ANAME.PROC.OF

(REL-BV HISBV

X .DEF-OF INDEX-EXPR Y 2)
(RELENUMER H[SBV X .DEF-OF INDEX-EXPR Y 2)’

WE *~.clauses
A QE **.clauses

The INNER-LOOP-THAT-DEFINES function finds an innermost locality where an element from the
argument array is defined (not merely used). The ARRAY-REFERENCES-AFFECTING function
returns a set of all points in the program where an array is referenced and the value returned can
affect the results of its operand, a program point. The EFFECTIVE.-ENUMERATOR-OF function
determines what (possibly implicit) enumerators its first argument (an array referance) is controlled
by, beyond the enumerators that control its second argument (an array definition in this case).

The map, z.CONDITIONS, allows any node z to be placed under the influence of conditions (an if
clause). INFERRED-CONDITIONS is a function that produces an If clause that specifles exactly

those conditions that must be true for the point representing the argument to be reached (a form of
assertion propagation).

REL-BY and RELENUMER give a piece of text that respectively will serve as a bound variable
and an enumerator for the fragment enumerated by the fourth argument to be valid for the third
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argument in the context of the second argument, using the bound variables of the flrst argument.
This would be the bound variables of the fourth argument unless there is a variable name clash.

This modifies the first PROCESSORS statement, which becomes

PROCESSORSP;n,1 S m<n1<!i<n—m+1
HAS Ay, m
| if m=1 then USES v;, HEARS Q

Application to the assignment %o A} in (P.3)) produces

PROCESSORS Py m,1 < m<n, 1 L1 < n-m+1

HAS A, m
If m=1 then USES v;, HEARS Q

| If2 < m < nthen

| USES Aix,1 <k<m

| USES Aiyx,m—2,1 SE<m

| HEARSPix,1 £k<m

] HEARS Piyam—ix,1 <k <m

Finally, apply MAKE-USES-HEARS one last time, to the null “enumeration®, (P.3¢), that sends

the output value to the output *srray”, O. This forces us to modify R’s PROCESSORS statement
as follows:

PROCESSORS R HAS O
| USES Ay o HEARS Py ,

This statement is in its final form.

The applications of MAKE-USES-HEARS require flow analysis and some ability to reason about
enumeration (to construct if clauses).

1.3.2 Optimization Rules

The rest of the rules described in this section will transform the simplest parallel structures into
more efficient ones. They do this by detecting and removing reducdant interconnections.

1.3.2.1 Rule A4: Improve HEARS clauses

It may be that s HEARS clause of a PROCESSORS statement requires each processor to be con-
nected to more than one other processor. This is undesirable, because the number of interconnections
in the whole collection of processors would grow faster than the number of processors, and the cost
of interconnections would exceed the cost of processors for sufficiently large problems. This would,
in turn, decrease the size of the largest problem that could be handled by a given parallel structure.

However, often it is not necessary for each processor to be connected to all other processors whose
values it needs. If processor P, needs values from processors P'; and P, but P, needs a value from
processor P., it may aot be necessary for P, to be connected to P.. P, must be connected to Py,
but P, will be able to get the value that P, wants from P,, s0 it (P,) can pass that datum along.
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This form of this observation only secures 3 constant factor reduction in the number of intercon-
nections (in this case, from two to one), but it is possible to do better by extendinug the principle.
Suppose, for example, that a structure includes a family of processors P; for 1 < ¢ < n. Further

suppose that Vi, 5 where 5 < ¢, P, needs values from P;. In this case, P;4; will need all the values
P, needs, plus the value in P; itself.

Basic Observation 1.5, In a case such as this P; is capable of supplying all of the information that

P;41 needs, 20 st 52 posasdle to modify the structure to replace the 8(n) connections required by this
HEARS clause by a single connection.

Definition 1.8. [n a parallel structure, a family of processors is the set of processors defined by o
single PROCESSORS stetement when enumerated over the PROCESSORS clause’s enumerator.
That farily is generated by that PROCESSORS statement.

Definitlon 1.7. The set of proceasors in a processor P, 's family HEARJ by P, due to s HEARS
clause Ho will be written Ho(P,).

Definition 1.8. Consider Ho(P,) and Ho(P)). Suppose that each is s subset of the same family as
Po and Py {which are in the same family because they both have the same HEARS clause, Ho). The
inlerconnections defined by Hy telescope if these sets Ho(P,) and Ho(P;) either are dissoint or one
strictly contains the other, for any choice of P, and Py tn the family. We also say that Fl, telescopes.
UVP.,P.E family [0 c HO(Pa) C HO(PD) = 3P.Ef¢ms'ly :[HO(PG)U{PG}=HO(P¢)” then Ho snowballs.
The notion of a USES clause telescoping is defined similarly. A partition i1 induced by a telescoping
clause ¢co if two processora are in the same partition whenever the sets defined by ¢q overlap.

Theorem 1.9. /f a HEARS clause Hy snowballs, it can be replaced by another BEARS clause that
only specifies input from a single processor.

Proof: Consider the family of processors described by the PROCESSORS statement that contains
the HEARS clause. Consider also the induced partition II.

If the cardinality of an equivalence class E €11 is (say) ¢, then VP, € E:{Ho(P.)| < ¢. (No processor
can HEAR itself because it would never be able to complete its calculation if it needed its own result
to do so.) Since Vz,y:z 3# y = |Ho(P.)| #|Ho(P,)l, and since |{0...c—1}|=c¢, the processors in £
can be completely ordered by the cardinalities of their HEARd sets. By the basic observation and

the snowballing property, each processor can get the information that Hy requires from the processor
that is its predecessor in this ordering. 1§

Deflnition 1.10. We call replacing a REARS clause, as in the previous theorem, reducing the clause.
We expect to be able to prove the following result; it “falls out” of a generalization of Theorem 1.5
for which we are working out a rigorous proof.

Conjecture 1.11, Reducing g inowballing HEARS clause will produce a parallel atructure whose

asymptotic speed is the same as the speed of the original structure.

We can now state this rule in English as follows: *If a HEARS clause snowballs then reduce it”, and
more formally as {ollows:
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rule REDUCE-HEARS (**) TRANSFORM
**'PROCESSORS PNAMEppy PENUMER ... if CONDI then

HEARS PNAMEypy

HENUMER...'
APENUMER.CLASS =ENUMERS

AHENUMER.CLASS =ENUMERS
A COND1.CLASS =PREDICATE
A COND2.CLASS =PREDICATE
A CONDIV.FREE-VARS C PDV
ACOND2FREE-VARS C PDV
A SET1=(BOUNDBY PDV (1) HBV HENUMER)
A SET1a=(BOUNDBY PDV (2) HBVY HENUMER)
A PROCI=(BOUNDBY PDV (1) PDV O)
A SET2=(BOUNDBY PDV NIL HBY HENUMER)
A PROC?2={BOUNDBY PDV NIL PDV @)
A PROCh=(BOUNDBY PDV NIL HEXPR ©)
A (THEOREM
((SETINSET1a)€{Q SET1 SET1a}
A((@ CSET1ICSET1a ACOND1)= SET1UPROC1=SET?)
A(CONDI1 ACOND2 & SETILUPROCh=SET?)))
***PROCESSORS PNAMEppy PENUMER ...
HEARS PNAMEugxpr ...°

when this rule is applied to the current state, the bindings will be as follows:
**=‘PROCESSORS P;,,,] Sm<n,1 << n—m+1

HEARS Piyxm—t, 1 £k < m—1..."
PNAME='P'
PDV=‘!,m’
PENUMER='1<m<n,1<I<n—m+4Y
HBV=‘l+ k,m—Fk'
HENUMER='1<k < m—0
SET1={{{ly + k,m;—k))1 <k < m;—1}
SET1a={((!3 -+ k,ma—k)):1 € k < my—1}
PROC1I={{{l,, m1)}}
SET2=(((l+ k,m—k)):1 <k < m—1}
PROC2={{{l, m})}
PROCA={{{{ + 1,m—1)}}
HEXPR="{{i +1,m—1))’
COND1=2< m<n’
CON D2=true

THEOREM is a function whose argument is a symbolic set-theoretic expression whose atomic terms
are set expressions. These expressions are principally created by the BOUNDDY function, whose
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inputs are the bound variables list of the processor name id, an identity parameter, the form that

defines the array references that comprite the array definition, and the enumerator (if any) for the
t array reference.

PDV will take values of sequences of bound vuriables, and HBV will be sequences of expressions.

BOUNDBY is a quaternary function which returns an object that acts like a set-valued expression
with {ree variables. Its four arguments are:

» A sequence of variable names, called VNS,
» Apn identification index, called IIX.
» A sequence of expressions, called EXS.

» A set of enumeration operators, called EQPS.

I gave each argument a name here for easy reference. BOUNDBY composes the object to return
by flrst associating a “subscripted” new free variable (not to be confused with an array element
reference) with each variable in VNS. The subscript is IIX (and if IIX is NIL there is no subscript).
Every occurrence of an element of VNS in EXS or EOPS is also subscripted.

In the BOUNDBY expression defining PROCh, HEX PR (implicitly existentially quantified) is
constrained by the THEOREM and PROChAh=... expressions.

Some bounds on the range of possible values for HEX PR are necessary. Something like

Vz3yze HEXPR = z€{'y','v+1''y—1"Y Aye PDV
would serve.
COND? is also constrained by the theorems that can be proven.

This rule reduces the HEARS clauses from the large PROCESSORS statement of the current state
o

HEARS P .,
HEARS P+ 1,m—1

The resuiting PROCESSORS statement is

PROCESSORSP;,,,1 S m<n1<i<n—md1
BAS Ay m

if m==1 then USES v;, HEARS Q

it2 < m < nthen
USES A(J,X g k S m
USES AH.g,m_;,l _<_ k S m
HEARS P;pn—,
HEARS Piyy m—1

Figure 5. Final Form of Main Processors Statement in P-time Dynamic Programming Derivation

1.3.2.2 Rule A5: Write the Individual Processors’ Programs

The general idea of the rule is that the first rule isolated the deepest enumeration in the specification
which assigned a value to an array element, and built the beginnings of a parallel structure where
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each array element within the domain of that enumeration had its own privale processor. Since the
enumeration in time has been replaced by an enumeration in space, the layers of enumeration that
get us to the point which induces the creation of the first parallel structure can be stripped away.

A technical note is that the enumerations can only be completely discarded when there is no
calculation at intermediate levels. If there is such calculation, the system will have to add it to the
appropriate processors when it strips away the layers of enumeration that include such calculation
as well as the deeper enumeration. This does not make the asymptotic bekavior of the parallel
structure any slower except whep the calculations include enumerations. When this is the case, it
might be possible to respecify the problem to have separate copies of the array enumerated in the
calculation for each cell of the target array. This would require an array whose dimension is the
sum of the dimensionalities of the two arrays.

This rule is expressed in English as follows: *Supply each processor speciied by a PROCESSORS
statement with a copy of those enumerations from the original program that occurred within the
region that included the assignment to array elements that generated that PROCESSORS statement.
The references Lo array elements are replaced by associative lookups from the table of information
that the processor has HEARd. The outer enumerations are stripped from the program, and uses of

the variables that were bound in these outer enumerations are replacec .y constants reflecting the
processor’s ID.”

The derivation of the P-time dynamic programming parallel structure is almost complete. It remains
only to reduce the depth of enumeration .o the single level implicit in the segment,

Ame= O FlAn Aisam—s)
ke{l.m—1)

Rule AS does this. The complete parallel structure that rasults is as follows:

ARRAY A 1 Sm<n,1 << n—m+1
PROCFSSORS Py m,! Sm<n 1 << n—m+!
HAS Ay
if m==1 then USES v;, HEARS Q
If2<m< nthenUSES A4;,,1 <k <m
USES A|+g,.._hl S k S m
HEARS P; n;y
HEARS Piyy m—1
ARRAY v,,1 <! < nINPUT
PROCESSORS QHAS v;,1 <1< n
OUTPUT ARRAY o
PROCESSORS R EAS O

{includeif m=1): A;; ~ v 6(1)
(includeif m>): Am = O FlAns, Aigam—s) 6(n)

RE(L. .m~—1) :
(includesfI=1 A m=n) 0 — A; s 8(1)

1.3.2.3 Rule A6: Improve Topology of Input/Output

We discovered that the rules described so far will produce a parallel structure in which every
processor is directly connected to the input and output processors when given a specification of
array multiplication. Only one I/O processor is created per I/O array, and for many problems,
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including array multiplication, it is necessary to get some input or output from/to every processor.
(P-time dypamic programming is an exception, in which only §{n) of the #(n?) processors receive
input values and the output is only a single value.)

We therefore conceived another rule to attempt to reduce the excessive connectivity that results
from every processor needing access to input or output.

This rule is also not yet formulated in V, but it states that if the following conditions are met:

» the number of processors n, in a family that receives input from or sends output to a given
processor is asymptotically unacceptable, and

» there is a HEARS clause Hp such that the number of processors that do not HEAR any processor

using Hy clause (if input) or that are not HEARd by any processor using that clause (if output)
is asymptotically less thac n,,

then the 1/0 HEARS clauses can be reduced so that only those processors at a source (or terminus
if output) of Hy are directly connected to the I/O processor.

1.3.2.4 Rule AT: Create Interconnections in a Family to Reduce I/O Cornnectivity

Rule A6 allows the reduction of connections from/to an I/O processor where a set of interconnections
already exists to solve the I/O-free portion of the problem. In some problems, including array
multiplication, no convenient set of interconnections exists and one must be introduced solely to
distribute I/O values. Fortunately, the rule that would do this is fairly simple to state and is
evidently implementable, given the mechanisms already required for REDUCE-HEARS.

The rule is: where a single USES clause telescopes, order the induced partition (definition 1.8) by
the processor indices and interconnect the processors in each partition with a new HEARS clause
where each processor is concected (only) to its immediate predecessor (if any) in this ordering.

§1.4 A Derivation of Fast, Parallel Array Multiplication

Computer scientists have proposed many parallel schema for the array multiplication problem,
probably because it is a practically important problem and seems so obviously amenable to parallel
processing. One of the prettiest parailel structures is described in [KungLei-76]. Kung's algorithm
multiplies an n X n array in 8(n) time using 8(n?) processors of constant size. (Kung makes the
assumption that a solution that invc ves 8(n) processors in communication with the outside world
is acceptable. This subsection follows that assumption.) The best known sequential algorithm uses
8(n®%') multiplications, but the obvicus parallel structure using n*-®! processors to do the job in

lipear time does not work; processors tave %5 wait for other processors and have to receive copies of
their results.

With the rules and postulated mechaisms [or deriving information not locally obtainable from the
specifications it does not seem possiti: to derive Kung's systolic array. It is, bowever, possible to
derive another parallel structure with l.near 2xecution time. We added rule A7 with this derivation
in mind, but do not feel that A7 is ccotrived or impractical.

Our parallel structure is inferior to systolic arrays because it uses more processors on a restricted
class of matrices called “band matrices,” 12 which all but a narrow diagonal band of the input
matrices (and therefore of the outputr matrices) contains zero values.

The starting point of this derivation is 4 specification of array multiplication (we are assuming square
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arrays to simplify the discussion):

INPUL ARRAY 4,1 1S n,1<m<n
INPUT ARRAY Bj,1 1< n,1<m<n
ARRAYC 1 S1<nn1<m<n

OUTPUT ARRAY Djn, 1 €11 < m<n

ENUMERATE i€{l...n} 6(1)

ENUMERATE 5€{(1...n} #(n)

Cij= 9. AirxBp; 8(n*)
K€E(1...n)

D ~Ci; 8(n?)

The use of arrays C and D seems redundant, but its purpose is tezhnical - our rules would not
permit us to assign multiple processors to a single array if that array were an INPUT or OUTPUT
array. Duplicating all of the arrays in this manner, to avoid all appearances of *prejudicing the
case” of which array’s parallelism would be important, would only change in the resulting parallel
structure in that each processor would be replaced by a family of three.

MAKE-PSs and MAKE-IOPSs add PROCESSORS statements,

INPUT ARRAY Ay, 1 € 1<n,1<m<n

| PROCESSORSPAHAS Aj;m,1 1<, 1< m<n
INPUT ARRAY B, 1 €1<n,1<m<n

| PROCESSORSPBHASBim,1 <1<n,1<m<n
ARRAYCim,1 €1<n,1<m<n

| PROCESSORSPCim,1 <{<n,1 < m<nHASC m
OUTPUT ARRAY D ;,1 €11 <m<n

| PROCESSORSPDHASD m,1<I<n1<m<n

ENUMERATE i€(1...n} 6(1)

ENUMERATE j€{(1...n} 8(n)

Cii— 9. AixBr; 8(n3)
RE(1...n)

D +—Cij 8(n?)

MAKE-USES-HEARS completes the rough form of these statements.




18 1. PRoBLEM DESCRIPTION, SOLUTION TBCHNIQUES AND RULBS

" ARRAY A, 1 <1< n,1 <m < nINPUT

' PROCESSORS PAHAS A;n,1 <1<, 1< m<n
ARRAY 8,1 £1<n,1 <m < nINPUT
PROCESSORSPBHAS B;,,,1 <{<n1<m<n
ARRAYC;m,1 £1<,1<m<n
PROCESSORS PC;,,,1 £1< 1,1 <m <nHASC

} USES 41,1 £k <n

| USES By,m,1 <k <n

|

|

HEARS PA
HEARS PB
OUTPUT ARRAY D ,,,1 €1<n,1<m<n
PROCESSORS PD HAS Dy ,,,1 <1< n,1<m<n
| USESCim,1 <1<n,1<m<n
| HEARSPC .1 < i< nl1<m<n
ENUMERATE i €{1 ...n}

o(1)

ENUMERATE j€{1...n} 6(n)

Cij+ Z Aix By y 8(n®)
kE{1...n}

Dij+—Ciy 0(7!:)

REDUCE-HEARS is unable to improve this parallel structure, because there are no interconnec-
tions among the PCs to improve. Rule A8 is also helpless, although the topology of the intercon-
nection graph is too rich (#{n?) rather than the goal of 4(n)). Rule AT comes to the rescus. Adding
the HEARS clauses allowed by A7 and by the USES clauses of PC produces:
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ARRAY A m,1 €1 < n,1 £ m < nINPUT
PROCESSORSPAHAS Ajm,1 < (< nl1<m<n
ARRAY Bim,1 €1 < n,1 £ m < nINPUT
PROCESSORSPBBAS B 1 <{<n1<m<n
ARRAYC 1< i<n1<m<n
PROCESSORS PC;,,,1 <1< n,1 < m <nBASC

USES A, 1 <k<n

USES Bym,1 Sk <n

HEARS PA

HEARS PB

Ifm > 1 then BEARS PC,

if{ > 1then HEARS PCi_, ..
OUTPUT ARRAY Dy m,1 <1< n1 < m
PROCESSORS PD HAS Dy m,1 < { < m,1

USESCim,1 <1< n1<m<n

HEARSPC;,,,1 <1<l <m<n
ENUMERATE i €{1...n}

ENUMERATE j€{1.. n}
Cij+~ Z A; 1Dy ;
NE{1...n}
Dii—Ci;

Then rule A6 is applied twice, and rule AS once, finishing the derivation.

ARRAY A, 1 €1< 0,1 < m < nINPUT
PROCESSORS PAHAS A;m,1 <1< n1<m<n
ARRAY By, 1 <1< 5,1 € m < nINPUT
PROCESSORSPBHAS Bym,1 <1< n1<m<n
ARRAYC m 1 €1< 1< m<n
PROCESSORS PC;,m,1 <1< 0,1 <m < nHASC

USES A;3,1< k< n

USES By m,1 < k< n

if m=1 then HEARS PA

If =1 then HEARS PB

if m > 1 then HEARS PC, .,

it > 1 then HEARS PCi_, ,,
OUTPUT ARRAY Dy m,1 S i< n1<m<n
PROCESSORS PDUAS Dy, 1 <1< n,1<m<n

USESCim, 1 €1<n1<m<n

HEARSPC;,1 <1< n1<m<n

Cim= Y. AixBim
ke{t..n)
Dl,m - cl,m

{,m
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§1.5 Creation of Virtual Arrays, Processor Aggregation

1.5.1 An Iaformal Description of the Techniques

Consider the enumeration in Subsection 1.3.2.2,

Ame- QO FlAnAsm—)
kE(1..m—1)}

There is an enumeration, but only over r-values. For this reason, use of separate processors will not
be generated for the steps of the enumeration.

Now one can make a few changes to the specification in order to generate separate processors for
the steps of the enumeration. (This will be motivated later.)

Generate the following virtualization, creating the array A’

ARRAYA',',,‘_.,I <m<nl<I<n—m+1,0<k<#(1...m—1}
AII,M,O - daseq
ENUMERATE k€((1...m—1)) do

Al (1 me 1) =1(8) * AL (1 me 1y =3 (6)—1 © F(ALx, Aia,m—1)

This structure represents several changes:

» First, it introduces a new dimension to the main array for each level of enumeration performed
to find a value for the old elements of the array.

» Second, the enumeration k €{1...m—1} into the enumeration k €{(1... m—1)} is changed. This is
perfectly legitimate—the set enumeration does not forbid enumeration in a specified order. When
we consider automating this process, however, we should remember that there are m! ordered
enumerations corresponding to a specific unordered one of length m. The best orderings to try will
probably include the arrival orderings inferrable from HEARS and HAS clauses, and the “natural”
orderings, i.e. numerical order and inverse numerical order (where numbers are involved).

Of course, this only applies when the inner enumeration(s) epumerate over a set. When the
enumerand is already a sequence, this step and the fifth are unnecessary.

» Third, the value daseq, the value of O‘ea, is introduced.

» Fourth, the function {{1...m—1))—1, the inverse of {(1...m—1}) considered as a function, is also
introduced. This will in fact be a function whenever it cun be shown thai the sequence has no
duplicate elements, which will certainly be the case where the sequence is simply an ordering of
some set, and will often be the case otherwise.

» Fifth, the running totals implicit in the (D gty notation are explicated.

For P-time dynamic programming virtualization is worse than useless. The extra processors serve no
purpose, they need to communicate with each other, and their existence forces the data to arrive in
a specific order. More sophisticated virtualization heuristics could prcduce a dilferent virtualization
and eventually a different parallel structure by choosing a different base case and enumeration order.
This technique is not usefui on this specification.
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However, consider the case of linear array multiplication. Application of the seven rules produces
the following parallel structure:

ARRAY A}, 1 €1 <81 < m < nINPUT
PROCESSORSPAHAS Aim, 1 <{<n1<m<n
ARRAY Bjm,1 <1< n,1 <m < nINPUT
PROCESSORSPBHAS Bjm, t <I<n,1<m<n
ARRAYCim,1 <1<n1<m<n
PROCESSORSPC;m,1 1<, 1 <m<nHASC,m
USES Ajx,1 <k <n
USES Bxm,1 €k <1
| if m=1 then HEARS PA
| If (=1 then HEARS PB
if m > 1 then HEARS PCy m—
if{ > 1 then DEARS PCi_y,m
OUTPUT ARRAY D;,1 <1< n,1<m<n
PROCESSORSPDHOAS D;,h,1 €I<n,1<m<n
USES Cim,1 €1<n,1<m<n
AEARSPC;,,,1 <1< n1<m<n

| Cim+= Y. AuBim 8(n)
ke(l. .n)
i D(,m - Cl,m 0(1)

The asymptotic behavior of this parallel structure teems to be the same as that for Kung's parallel
structure [KungLei-76]. However, there can be an advantage of Kung's pzrallel structure over
the simpler one. With multiply “band matrices”, where j—i < koo V j—¢ > k0 = A, ;=0 and
J—i<koy V j—i> ki = A;;==0, it is possible to use fewer processing elemeats. If ky 0—ko,0 +
l=wo and k; ;—k; o -~ 1=w,, then it can be shown that only (wo + wy)n of the u? processors
of our paralle] structure can have non-zero answers, and only that many processors have to be
provided. With Kung's parallel structure, however, only wow, processors have to be provided. The
multiplication takes 6(n) time. (It is possible to use the #({(wo + w;)n) processors to multiply the
band matrices in §(wo + w;) time, but this parsllel structure cannot be synthesized automatically
using these techniques, and in any event the time/processors tradeoff oJered by Kung's parallel
structure may be desirable.)

The virtualization process, alone, is not enough to synthesize Kung's systolic arrays. Notice that the
cumber of processors in the parallel structure that results from the obvious virtualization is §(n®).
Partial sums of product array elements reside in different processors st different times. This feature
makes some technique like rirtualization necessary to separate the computation of partial products,
but processors have to be grouped to prevent this processor count blowup. Another more difficult
technique, aggregation, will reduce the processor couit to the target level.

Heuristically, aggregation is the grouping together of processors, eact of which does a small amount
of work, into groups of processors, each represented by a single processor. Each processor does ail of
the work that any processor in the original group did, but this can still be dope quickly because each

of the processors in the original group had a small amount of work to do, and no two processors had
to do their work at overlapping times.

The reason why Kung’s parallel structure can multiply arrays in linear time using constant space
per processor is that he has performed a virtualization on the summation of result array elements.
He avoids the need for n® processors by a process called processor aggregation. Fach processor is
responsible for computing 4(n) elements of the virtusl array.
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Reasoning similar to that performed in the change-of-basis generator and thenrem praver will serve
us well here. The target interconnection structure is
PROCESSORS Py ,,,—n<m<n,—n < <n—m+1
HASC!;,,1<i<n1<j<nl <k ni—j=l—mi=mninln—l+1n+m+ 1,n)
USES A;;,1 <1< n,l <7< n,i—3=!
USES B;;,1 €i<n, 1 Lj<ni—j=m
HEARS Pi_y,m
HEARS P{ m41
HEARS P,

which is Kung's structure. This requires two changes of basis of input arrays (i—j of both A and
B, rather than either ¢ or 5), and a change nf basis for the C array, as well as some rather subtle
timing arguments and replacement of the summation of each C-array element over a set of integers
to a summation over a sequence of integers.

The figures on the following pages illustrate the virtualization and aggregation processes, as they
apply to an n=3 instance of a matrix muitiplication problem.

1.5.2 Formal Deflnitions of Aggregation and Virtualization

Deflnition 1.12. A wirtualization of s parallel siructure is ¢ new parallel structure that reaulls from

> adding & dimension to an array, say A, rroducing A’ as follows: if Ay is ¢ defined element of A,
and the computation of A7 12 performed by enumerating n elements of some set or vector S and
performing a binary operation on ¢ running total and each element of S as st {3 enumeraled, then
AL.|... Jor0 < m < n will be a defined element of the new array, A';

» making the enumeration of S an ordered one, and

» replacing the original enumeration/calculation with o calculation that ezplicitly folds the 7 value

of the ordered enumeration as performed for A; by operating on AL .. ond that 7*» element.
gl ii—1

The process of creating a virtualization s also called virtualization.

Defnition 1.13. An aggregation of a parallel structure i3 a new parallel structure that results from
partitioning the old set of processors of a family into equivalence classes, and creating a processor for
each equivalence class. A processor inthe aggregation HEAR s another such processor if any processor
in the first equivalence class BEAR any proceasor in the second.

The process of creating an aggregation is alao called aggregation.

There are, of course, an intractible pumber of possible aggregations according to this definition.
Only simple aggregations are worthy of consideraton, because allowing complex ones would lead
to a combinatorial explosion and because the complex ones would tend either to leave too many
interprocessor connections or to have too much work being done in some of the processors.

Suppose that the virtualized family of processors is defined as
Peyze....xm, (enumers) (written Py)
We feel that interesting aggregations would identify
V2,L3Pe, Py 2P =Poupp

where 7=((i1,13 ...5m}}, all the i;€{—1,0,1}, and | ranges over integers. Here 3P means that a
given processor exists (and is not out of bounds of the original virtualization.) Early aggregation
systems will confine themselves to this case.
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1.5.3 What Virtualization Can and Cannot Accomplish

An important measure of the cost of a parallel structure is the product of the number of processors,
the size of each one, and the amount of time the parallel structure takes to do a calculation. I will
call this the PST measure.

PST=8((we -+ w3 )n?) for the simpler parallel structure for matrix multiplication, when applied to
band matrices of widths wy and w,. Virtualization and aggregation can improve this to 8(wow;n)
by reducing the number of processors while allowing the size of the processors and the rupning time
of the algorithm to remain the same.

It is possible to achieve PST=6({(wo + w;)?n?) by other means. This is equivalent whenever
wy;=#(wg). Divide the n X n array of potertial processors into (wg + w;) X (wg + w,) blocks
and introduce input and output connections at the appropriate edges of each such block. This is
impossible to derive by techniques shown so far, or reasonable extensions to them. It has the further
disadvantage that the number of connections to input and output processors is 8(n) , while the
same number is §(wow,) for the systolic array parallel structure that results from virtualization and
aggregation. A complexity measure that took into account the connections to the I/O processors
would favor the systolic array structure even over the improved simple matrix multiplication scheme.

It should be noted that the parallel structure resulting from partitioning the potential processors
has the same PST as systolic arrays, but P and T are different. Different measures, such as PST?
may make different parallel structures more desirable.

§1.6 Practicality Considerations

In addition to the results described above, we have investigated the problems that will be encountered
when automatically derived parallel structures are used. A parallel structure will in general specify
a collection of interconnections that may not correspond to any “off the shelf” product. We have
begun to develop several concepts which Kestrel intend to explore further in 1983, but we will
describe them briefly here. These considerations will be important when actual use of a system for
automatically generating parallel structures is contemplated.

1.8.1 Basis Change

The topology of a parallel structure may be the same as that of an existing multiprocessor machine,
but this fact may not be evident because of the nature of the indices. Suppose, for example, that
multiprocessor systems of various sizes organized as square grids were commonly available, but that a
user had submitted an instance of P-time dynamic programming to the parallel structure generator
and received the result described above. The parallel structure’s topology fits half of a square grid,
but this fact is “hidden” under our choice of indexing. A change of basis can expose this fit.

1.8.2 Granularity Considerations

Many of the rules in this derivation system (and most of the need for inference) resuits from our
unwiilingness to consider as realizable a parallel structure where every processor is connected to
every other. A consideration we labelled granularity persuades us that even a parallel structure in
which every processor is connected to only a constant number of other processors and where the
iaterconnection diagram is planar may be unrealizable in the future, where it will be common to
have more than one processor, but not a complete system, on a “chip®.

The d-dimensional lattice architecture may not be the ideal architecture for hardware implementation
for a couple of reasons to be discussed in this section. One reason is that the connections specified
may be too rich for an eficient VLSI implementation.
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When a multiprocessor system is built on a single chip, or wben each processor of a multiprocessor
system is on its own chip, the concepts we intend to introduce are of nc importance. However, it

is important to consider the case where each chip cuntains several processors, but not a complete
system.

The maximum practical “pin count” of a chip may limit efforts to place ever increasing numbers of
processcrs on a chip as our fabrication technology improves. This is a separate limitation from wire-
count limitations and planarity limitations. For example, in a two dimensional array of processors
(each processor has two coordinates, each within a range of integers, and P, ; is connected to Py 4,
and P,y ;) the interconnection is obviously planar and the number of wires is proportional to the
number of processors. Taiis topology is therefore realizable on a single chip or in a configuration
with one chip per processor. However, if our technclogy would otherwise allow N2 processors on
a chip, and a system with M 3 N? processors is desired, the number of busses from one chip to
others would be 4N {except for chips on the edges of the array). This may require more pins than
can be placed on a compact package.

To see how the various proposed architectures fare under the criterion of minimizing pin count as
processor-per-chip count increases, consider the following table.

interconnection geometry busses per N-processor chip in M-processor system
complete interconnection NM

perfect shufile 2N°

binary hypercube N(log(M/N))'

4-dimensional lattice 2dN(d—1)/4

augraented tree 2log(N +1)+1

ordinary tree 3

Figure 6. laterconnection Requirements for Various Architectures {tectative)

It may be possible to improve bounds marked with an * by an asymptotically small factor using
suitable coustructions. Such improvements will not yield a qualitative difference in the sense of the
argument.

For any architecture above the horizontal line, any decrease in A (the element size of a chip's logic
elements or integrated wires) is useless without a proportional decrease in the chip’s pin spacing.
This is not true for architectures below the line. For those architecture, it is possible to preserve the
pin spacing as A decreases, provided the chip’s area or pin deunsity is increased modestly.

In the tree structured architectures, most of the processors will be in multiprocessor chips, which
we call leaf chips because they contain the leaf processors. These chips each hold 27 leaf processors
for some 7, plus 27! other processors necessary to tie the leaves together. Pairs of chips, including
leaf chips, will be tied together with single processor chips having three busses each (or flve for

augmented architectures; see Figure 7). The number of single processor chips is one less than the
oumber of leal chips.

A construction tbat eliminates the single-processor chips in retura for increasing the buss connections
required for all chips by a modest coastant factor has been described [BhattLei-82].
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Section 2

Inference Requirements Analysis and Implementation Proposal

by
Tom C. Brown
Kestrel Institute
Qctober 1982

§2.1 Introduction

Inference requirements for two of Richard King's concurrent computing system synthesis rules
(MAKE-USES-HEARS AND REDUCE-HEARS) are analyized and shown to be

» intractable in their more general forms
» tractable under realistic constraints which include the applications thus far considered.

The ad-hoc constraints bring to bear special-case decision procedures for extended Presburger arith-
metic and systems of linear constraints [Shostak-77,79 81).

The first rule [§ 1.3.1.3] documents data-flow dependencies for iterative array corputations. Each
element of an O(nP) - element array is defined exactly ouce by a sequence of iterative array-
element assignments using inpute and previously dedned array elements. The sciution is in effect
a parameterized description of a disjoint covering of the computatiop-array index set. Under
reasonable constraints this covering can be computed in linear time and verified (disjuintness,

completeness) i quadratic time, as a function of the number of iterated assignment statements
in the input specification.

The second rule |§ 1.3.2.1] recognizes a phenomenon called srowballing, wherein each member of an
O(n)-element ordered array or processor family depends on results of each predecessor. This O(n?)
dependency pattern is reduced to an O(n) connection pattern wherein each processnr receives resuits
from its immediate predecessor (or input) and forwards them (plus its own result) to its immediate
successor {or output). Heuristic guidance for the solution is extracted from

» the physical adjacency postulate: processors with “nearby” indices are candidates for immediate
conpection (the Hegrs relation)

» the linearity postulate: each HEARS clause defines a linear one-dimensional (O(n)) subfamily of
the processor index set.

These constraints are easily tested. Once verifled, the snowballing property reduces to a simple test

which, instead of being 0(2"‘) as in the general Presburger-arithmetic decision problem {Shostak-79]
of which it is an instance, is linear (in the input HEARS.clause length, under reasonable assumptions,
§ 2.4-5).




§2.2 Data Flow Analysis

The MAKE-USES-HEARS rule operates on s specification wherein a processor has been assigned
to each computation array element and each [/O array. It extracts {rom the program a set of inferred
conditions and corresponding USES and HEARS clauses. The conditions are inferred from index
ranges of enumerated (iterated) assignment statements. The rule makes allowances for the fact that
iteration index variables need not correspond to Processor index variables, or that first even and
then odd rows may be computed, etc.

Consider the schema {King-82],

PROCESSORS Pym,1 Em<n,1 <I<n—m+1
HAS A;m

PROCESSORS @
HASy,1 <1< n

PROCESSORS R
HAS O

D W e W N

-

enumerate [ €{{1...n}) do
Ar,g — vy

0o

9 enumerate m'€((2...n)) do
10 enumerate ' €{1...n—~m' 4+ 1} do

11 A‘I'ml -~ O F(A]l'hl'ml.f.kl'ml_kl)
ME(L.m'—1)

120 «~ Al,n

Following line 2 we should use lines 7-8 to infer the condition

(P.3a) if m=1 then
USESy,1 €1<n
NEARS @
because the assignment (line 8) binds m to 1 and sets Ay, y=v;(I'=<1...n).

Similarly, we should adjoin the clauses

(P.3B)ir2 € m < nthen

1 USES Ajx,1 £k < m—1
HEARS P, 1 £k < m~—1
2 USES Aipax,m—s, 1 Sk < m—1

HEARS PH..;',,._;,I <k<L<m—1

where again the iaferred condition 2 € m < n is dorived directly from the controlling enumeration
(line 9). The two subclauses (1) and (2) sre not part of the inferred-conditions derivation whose
automation is the subject of this section; however, the rule derives (1) by selecting Ay i, in line 11
and noting that the defipition of Ay ., uses Ay for k'=1, ...,m'—1, and similarly for (2) using
Ay 4yt mi—p. These mechanisms are already encoded in King’s rule.

ln general the inferred conditions problem is, given declaration
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ARRAY A iRy, ..., ipR, (1)
with domain {#:Ry A ... A R,} and a list of iierated assignments

enumerate 5.5

enumerate j,:5,
Ay —GlA, iyl <1< (2

verify that the corresponding sets

UG:S1 A ... ASQ) @)

form a disjeint covering of {(:R; A ... A R,}. Clearly this condition is best tested by expressing
each condition (2') in the form

GS{A...ASH) (3)

where S{ & 5.0 (M=1 A 5:(7)]; moreover, (3) is exactly the inferred condition required. Clearly

{3) is uniquely defined from (2') iff f is injective (one to one) on {7:5; A ... A Sg}; otherwise AIG)
is defiped twice.

To ensure effectiveness of the reduction to (3) we require that f be a linear transformation from Z9
vo Z°%:

JOh=t% X7+ dy (4

where ; X 7 is the inner product of Z; and 7. Similar linearity constraints are piaced on R, S) -
e.g. Ry has the form

LiSC X+ <U, s
where Ly, Ux, Cx, Dy may contain ji, ..., s5x—1,n free.

Now the covering of {i:R} (A’s domain) is disjoint iff S/ A T/ is unsotisfiable for each pair (S/, T?)
such that {1:57} and {i:T/} are distioct instances of (3). In this conjunction n is a Skolem constant.
The disjointness condition can be readily tested if in (3),

SIA...A S{ is a Presburger formula with constants (e.g. t, n) (6)

Then the decision procedure of {Shostak-79] applies. This condition is clearly satisfied by the above
example, and all others in (King-82|.

The covering condition can be tested similatly. If {i:Ty}, ..., (3:T,} are the instances of (3) then
they cover {{:R} iff

Vn,l'.(R=Tx V..VvT]
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which reduces to extended-Presburger decidability of

RA~TyA ... A~ T,.

Notice that the HEARS clause for (2) is obtained by first transforming the assignment (2) with
coastraints Sy A ... A S; on j into an assignment

A(f) — G!IA,/(:,a‘):x <igrl

with corstraints S A ... A §§ on i. This implies that g(7, ki) must also be linear. The k, are
variables bound by iterated operators in G/[...] - e.g., (O,‘,E(ln_m,_l) F(...)) in line 11 above.

To conclude, the inferred-conditions function requires moderate ability to reason about systems of
symbolic inequalities in extended Presburger arithmetic, to rename variables and to invert linear
operatiops appearing in such formulas.Initially the inferred-conditions transforiaation may be imple-

mented (for the case considered) by an interactive fow-analysis with linear-operator manipulation
and extended Presburger inference capabilities.

§2.3 Reducing Processor Interconnection Degree

2.3.1 Probiem Statement

Given a program statement

PROCESSORS PNAMEpgy PITER ... HEARS PNAMEugy HITER (1)

where

PBV == processor bound-variable list,

HBV = H2V(PBV, k),

k = bouzd variable(s) not in PBV iterated by:
HITER = H.TER(PBV,n, k), iterator over k

Define F=F("={PBV:PITER(FBV,n)}, the  processor-family (index set) and

H=HW™=((a,b):PITER(a,n) A b=HBV(a,k) A HITER(a,n,k)} the Hears relation of (1).
Define H,, the processors HEARA 5y .

He=(b:Ha}
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Recall now the definitions of “telescopes” and “snowballs”:
» H telescopes if either H, C H,, Hy C H,,or HoP Hy=0, ie. , Vo, bEF.H, N Hy€{D, H,, H,}
» H snowballs if it telescopes and Va,b,z€ F'.[@ C Ho C Hy A Hou {2}=H,) = iz=a]"

If H snowballs then HITER(PBV,n,k) in (i) is “reduced” by setting k==ko where
HITER(PBV,n, k) and HBV(PBV , ko) is the index in Hpgy “closest” to PHV (using sum of
absolute coordinate-differences as metric).

2.3.2 Example:

An application of MAKE-USES-HEARS in |King-82| generates a statement

PROCESSORS Am, 1Sm<n, 1<I<n—-m+1
f2<m<n then

HEARS P, 1<k < m—1 (a)
HEARS Fiypmeyx, 1 <k <m—1 ®) (2)

Clauses (a) and (b) each generate snowballing Hears-relations, and are reduced respectively to

BEARS P jm— (a)
HEARS Piy1,m~1 (b)

It may be helpful to illustrate the resulting pattern for the case n=5 (b):

“See the note st the end of this Section.
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z v
reduced; *————>————¢
(yBEARS z )

z ¥
ioreduced; =— ——> — ¢

(vBEARS z)

N
(3.1) o “» .

Figure 7. HEARS clause (2b)

Notice that in (a) the clause is reduced by setting k=m—1 whereas in (b} it :s reduced by setting

k=1. Both clauses can be effectively normalized so that the solution will be to set k=maximal value
{below).

2.3.3 Remarks on “General Theorem-Proving Approach”

Without constraints on (1) the snowballing property can be quite intractable. Even if PITER, HBV,
and HITER are constrained so that only extended-Presburger formulas result, the problem may be
intractable without additional constraints and/or expertise on the Presburger problem-domain.

Thus given {2b), we would extend a Presburger arithmetic basis {or specialized prover) with pairing
axioms

hd(z,y)=z, tlz,y)=y
Integer(2) v (hd(2), ti(2))=2

Then

Flu)o 1 <tllu) < nAl < hdu) < n—tl(u) +1
Hyy & tl{v)=tl{(u) + Rd(u)—hd(v)

Al < Ad(v)—hd(u) < ti(u)—1 < n

A1 < hd(u) € n—ti{u) +1

are derived following (1).

To prove Telescopes (H) we assume not, for tome a, b,,5 € F(n), and derive a contradiction:
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F(a) A F(0) A F(a) A F(B)

H
o H,NHy#0O
H,. } aMHY 75
Hox/\"“H.x }Iidsz
HD’!A~Ha! }leHa
false } via Integer-Arithmetic, Pairing Axioms

To prove Snowballs (H), we assert its negation for scme a,bd,¢,d in F(n):

F(a) A F(b) A Flc) A F{d)

~Heey VHys, V~Hysy VHesy V ~Hypy V~Hya,
Haa

~Haz V H!z

~ Hya

~Hy V (Ha:) \ [3=C]

a7e

false

where the second clause asserts “spowballs” and z,y, 2, 22, 2s are universally quantified variables.
These axioms are in a form which can be given to the LMA prover [OverLusk-80].

We expect that specialized knowledge of extended-Presburger arithmetic decision procedures and
\nteger programming will be required (at least) for success of so direct an approach to this class of

problems. Another approach is to further constrain the problem without excluding the common
cases of interest.

2.3.4 Heuristic Constraints
Notice that snowballing HEARS clauses define “one-dimensional” transitive relations over F - e.g.
, the two-dimensional HEARS clause

BEARS Py, 1 < F < 1+ (m—m')

which “merges” (a) and (b) of (2) does not satisfy the "spowballs" predicate. Indeed its "reduction”®
would result in O(n?) processors sending data through two asymptotically hot wires. Thus we lose no

generality in constraining HITER (1) to iterate a single parameter (k) over a finite integer subrange
dependent on PBV n:

HITER = [L(PBV,n) < k < U(PBV,n)] 3)

Another plausible constraint is that each one-dimensional subfamily of a snowballing HEARS be a
“linear” subset of the lattice points over which H BV rapges - e.g. , for PBV fixed,
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HBV(PBV , k)tslinearink

Fquivalently, the frst differential in k

HBV{PBV,k +1)—-HBV{(PBV k)

is independent of k. Indeed, we find plausible the stronger constraint,

(5) ts constant (independent 2 f both k and PBV).

9

(4)

(6)

After all, if (5) varies with PBV then distinct colinear H-subsets of F have diTerent slopes and are
“likely” (though not required) to intersect, in violation of the telescopes constraint.

These constraints yie!d a normal form for each “linear snowball” (Figure 8):

HEARS PNAME 5(, 40,0 < k < L(2,n)

where C is a constant vector (the slope) and

z=F(z,n)+ L(z,n)}-C

Q)

(8)

where F(z, n) is the most-distant H EARd point and k=L{z, n)—1 selects the pearest H EARJ point

{in taxicab metric: sem of absolute coordinate differences):

Z=F(z,n)+k-C (k=3)
F(z,n)

Figure 8. A Lipear Snowball

Note that F(z,n)=F(z', n) for each z’ on the line; thus F(z, n) # F(z', n) implies H,NH|,=0.

2.3.5 Example. The HEARS clauses of Example 2.3.2 have normal forms:

{(a) REARS Py 33420010 < k < m—1
(8) REARS Plpme1,1)44¢~1,1),0 £ k < m—1

2.3.8 Linear Snowball Recognition-Reduction Procedure

Given HEARS clause (1) with HITER as in (3):
Step 1. Verify (8)
Step 2. Put (1) in normal form (7)

1
1
i
i
i
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Step S. Verify (8)
' : Step 4. Verify (9) (for 0 < & < L(z,n)):
F({{F(z,n)+ k- C),n)=F{(z,n) (9)
Step 5. Reduce (7) to (10):
HEARS PNAMEp(z N)+(L(2,N)—1).C (10)
t Failure of any verification attempt above implies return with failure (i.e. , the REDUCE-HEAR
i rule does not apply). This procedure suggests a refinement of King’s rule to two rules, a

NORMALIZE-HEARS rule which tests (6), and a REDUCE-NORMALIZED-HEARS rule
which implements the remainder of this procedure. §

2.3.7 Correctness and Complexity of REDUCE-HEARS Refinement

The constraints (3)-(8) can be tested in linear time, provided that HBV(PBV, k) contains no
non-linear symbolic expressions in (PBV,k). (Note that a linearity claim must exclude perverse

specifications such as T(n} X PBV(1)? x k* where T(n) is some arbitrary arithmetic formula which
eventually simplifies to zero.)

Given similar non-perverse linearity constraints on L{(PBV , n), U(PBV, n) of (3), we assert linearity
of the normal-form conversion (7). Condition (8) is a consistency test; it distinguishes the linear
snowball F(z,n)+ & C from the non-snowballing HEARS index F(z,n)+&-C+ D, D 7# 0. Certainly
it is conceivable that F(z, n) and L({z, n) might contain symbolic constants whose values would decide
truth or falsity of (8); in this event REDUCE-NORMALIZED-HEARS should admit failure apd
ask the user what is going on. (Thus far we have no experience with such specifications).

Now (9) is precisely what we need (given (8)) to assert that H telescopes:
H,NH' =0 & F(z,n)5# F(Z,n);

H,NH' €{H, H'} & F(z,n)=F{(z,n).

Again its verification (under the non-perversity assumption) requires only a linear-time simplification

of a symbolic linear expression; the constraint that k < L(z, n) has nothing to do with its truth or
falsity.

To conclude, the snowballs antecedant (2) now reduces to
{F(a,n)+ k-C:0 < k < L(a, n)}U{z}

={(F(b,n)+k-C:0 < k < L(d,n)},
which implies L(d, n)=L(a,n) + 1 by telescoping (F(a, n)=F(}, n)). Therefore
z=F(a,n) + L{a,n) - C=a
by (8), as required. We have proved the following:

Theorem 2.1. If Procedure 2.3.6 returns successfully with reduced HEARS clause (10) then it 11 o
reduction of the (linear) snowballing HEARS clause (1). 1

§2.4 Conclusions

Significantly, Procedure 2.3.8 does recognize the class of snowballs thus far encountered (and which
we expect ‘0 encounter) in linear time, instead of the super-exponential (worst-case) time which we
might initially fear for the unconstrained theorem-proving approach of § 2.3.3. Both thiz and the

inferred conditions problem illustrate the important heuristic of restricting the problem domain so
that simple procedures can be applied.

R —




The REDUCE-HEARS analysis is based on a somewhat less refined (and earlier) definition of
“snowballs” than the one used in Section 1. Under the heuristic constraint of § 2.3.4 the two concepts
are equivalent. R. King provided a discriminaticg example:

F={0,1,...,n}

H={{LE)0 < k < 2HJ Al < n}

It spowballs according to Section 2 but not according to Section 1. It violates the heuristic constraints
of § 2.3.4 because 2|!/2] is not a linear function of {. That it can be made into a snowball according
to Section 2 by adjoining n/2 additional HEARS edges (“rounding and reducing”) suggests that
both definitions merit consideration. A sequel to this report will present a simplified analysis in
terms of the more refined definition.
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